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University of California, Berkeley
Physics 110B, Fall 2003 (Strovink)

PROBLEM SET 8

1.
Consider a medium with uniform fixed dielectric
constant ε, permeability µ, and volume conduc-
tivity σ.
(a.)
Taking the curl of the two Maxwell equations
which themselves involve the curl, and using
Ohm’s law ( �J = σ �E) and the two other Maxwell
equations where appropriate, derive the wave
equations

(∇2 − ∂2

v2 ∂t2

)
�B = σµ

∂ �B

∂t(∇2 − ∂2

v2 ∂t2

)
�E = σµ

∂ �E

∂t
+

1
ε
∇ρf ,

where the phase velocity2 v2 ≡ 1
εµ and ρf is the

volume free charge density.
(b.)
In the wave equation for �B derived in (a.), sub-
stitute

�B(�r, t) = Re
(
�̃B exp

(
i(�̃k · �r − ωt)

))
,

where �̃B and �̃
k are complex (vector) constants.

Show that
k̃2

(ω/v)2
= 1 + iβ ,

where β ≡ σ
εω .

2. Please refer to the notation of the previous
problem.
(a.)
Write k̃ ≡ k + iκ, where k and κ are real. Show
that

k

ω/v
=

√√
1 + β2 + 1

2

κ

ω/v
=

√√
1 + β2 − 1

2

are solutions to the equation in part (b.) of the
previous problem.

(b.)
κ−1, the inverse of the imaginary part of k̃, is
called the skin depth. Show that the skin depth
approaches

√
2

µσω
when β � 1

2
σ

√
ε

µ
when β � 1 .

3.
Please refer to the notation and results of the
previous two problems. At normal incidence at
the interface between two dissimilar materials 1
and 2, the (complex) electric field amplitude re-
flected back into material 1 is expressed as a
(complex ratio) R̃ to the (complex) incident am-
plitude. By matching boundary conditions for
the electric and magnetic fields, R̃ is routinely
found to be given by the standard result

R̃ =
Z̃−1

1 − Z̃−1
2

Z̃−1
1 + Z̃−1

2

,

where

Z̃−1 ≡ k̃

µω

is the medium’s (complex) admittance. Consider
the case in which material 1 is an insulator and
material 2 is a conductor.
(a.)
If material 2 is an excellent conductor (β � 1),
show that R̃ → −1 regardless of the (finite) val-
ues taken by ε1,2 and µ1,2.
(b.)
Suppose that, if both materials were insulators,
they would have equal admittance (

√
ε1/µ1 =√

ε2/µ2). Suppose further that material 2 is a
poor conductor (β � 1). Show that R̃ → −iβ/4.
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4.
Please refer to the notation and results of the
previous three problems. In a relatively more
microscopic and detailed treatment, we assume
that N valence electrons/m3 of charge −e and
mass m move in a potential well with effective
spring constant mω2

0 and damping coefficient
γm. We define the complex dielectric constant

ε̃ ≡ ε(1 + iβ) =
k̃2

µω2
.

For not-too-dense media in which the electric
field felt by the electron is approximately the
same as the average field, in class we derived

ε̃

ε0
− 1 =

ω2
p

ω2
0 − ω2 − iγω

,

where the plasma frequency2 is

ω2
p ≡ Ne2

mε0
.

(a.)
Represent a good conductor by ω0 = 0 (un-
bound) and γ � ω (overdamped). Show that
the conductivity

σ ≈ ε0ω
2
p

γ
.

(b.)
Represent the ionosphere by ω0 = 0 (unbound),
and γ � ω (underdamped). Specialize to AM
radio waves, for which ω < ωp. Show that
|R̃| ≈ 1, i.e. that AM radio waves are nearly
fully reflected by the ionosphere. (At dusk, the
ionosphere drops to sufficiently low altitude that
reflection off it enables AM stations hundreds of
miles away to be received.)

5.
Please refer to the results and notation of the
previous problem. Consider an insulating solid
(ultraviolet ω0, ωp > ω0) that is transparent in
the visible (γ � ω0). Assume that the solid has
negligible magnetic properties (µ ≈ µ0). For con-
venience, work with the complex refractive index

ñ ≡ k̃

ω/c
.

(a.)
For ω well above resonance (ω − ω0 � γ), show
that

ñ2 ≈ 1− ω2
p

ω2 − ω2
0

.

(b.)
Writing ñ = n+ iη, where n and η are real, show
that either n or η, but not both, must be � 1.
(c.)
For ω well above resonance, but still below√
ω2

0 + ω2
p, show that n must be � 1.

(d.)
For the conditions of part (c.), show that |R̃| ≈ 1,
i.e. that visibly transparent insulators are nearly
fully reflecting over a band of ultraviolet fre-
quencies.

6.
Griffiths Problem 9.11.

7. Jones vectors.
For a plane transverse wave propagating in the ẑ
direction through a (not necessarily insulating)
material with constant ε and µ, a (co)sinusoidal
solution is represented by

�E(�r, t) = Re
(
�E0(x, y) ei(k̃z−ωt)

)
�H(�r, t) = Re

(
�H0(x, y) ei(k̃z−ωt)

)
,

where k̃ is the (not necessarily real) “wave vec-
tor” – here a scalar because we know it is
directed along ẑ. Faraday’s law causes �H0 to be
completely determined by �E0:

�H0 ≡ Z̃−1ẑ × �E0

=
k̃

µω
ẑ × �E0 ,

so we focus on �E0 as the sole independent vari-
able. For a transverse wave �E0 has no z compo-
nent. Here we assume that the phase relationship
between E0x and E0y is fixed – the wave is fully
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polarized. Then �E0 is a complex transverse vec-
tor, completely specified by four components. In
the Jones convention, all information carried by
�E0 except for its magnitude is written as a 2× 1
column vector with the x component on top:

�E0 =
(
E0x

E0y

)

≡ 1√|α2|+ |β2|

(
α
β

)
| �E0|

≡ �J | �E0| ,

where �J is the Jones vector. Jones vectors are
defined only within an overall phase (because
the absolute phase of an optical-frequency EM
wave can’t conveniently be measured); therefore
one has the freedom to set α equal to unity (un-
less it vanishes, in which case β is set to unity).
The above form involving the complex constants
α and β is a general Jones vector, corresponding
to elliptical polarization. More common Jones
vectors are(

1
0

) (
0
1

)
1√
2

(
1
−i

)
1√
2

(
1
i

)
,

corresponding, respectively, to linear x, linear y,
RH circular, and LH circular polarization.
(a.)
At z = 0, show (counterintuitively!) that the
electric field vector for RH polarized light pre-
cesses clockwise around ẑ, i.e. it precesses ac-
cording to the LH rule.
(b.)
Suppose that a particular state of elliptical po-
larization has nonvanishing x and y electric field
components. Then, within an arbitrary overall
phase, it may be represented by the Jones vector

�J1 =
1√

1 + |β|2
(
1
β

)
,

where β is a complex constant. You wish to char-
acterize this state of polarization as “RH ellip-
tical” or “LH elliptical”, depending on whether
(at z = 0) the electric field vector precesses
clockwise or counterclockwise around ẑ. What
property of β would you use to decide whether
this state is RH or LH elliptical?

(c.)
For the conditions of part (b.), decompose �J1

into a linear sum (with real coefficients) of a
wave with linear polarization plus a wave with
RH circular polarization. Perform this same task
with “RH” replaced by “LH”. If you are success-
ful in both tasks, you might wonder whether
there really exists a unique association of RH
or LH behavior with �J1. Would this concern
invalidate your answer to (b.)?

8. Irradiance and Jones vectors.
Consider two transverse plane waves A and B
which move in vacuum and are combined to-
gether (i.e. by a Michelson interferometer). The
beams have complex electric fields

(
EA

0x

EA
0y

)
=

| �EA
0 |√|α|2 + |β|2

(
α
β

)
(
EB

0x

EB
0y

)
=

| �EB
0 |√|γ|2 + |δ|2

(
γ
δ

)
.

Express the combined irradiance

IA+B ≡ 〈�SA+B · ẑ〉 ,

where �S is the Poynting vector and 〈 〉 is a time
average, as a function of the complex constants
α, β, γ, δ, and the uncombined irradiances IA

and IB of the individual beams.


